Lesson 3

Signed and Unsigned Numbers
Representation of integers base 2, 10, and 16, conversion between
bases. Binary addition and subtraction

Day 2 Review - Assembly Language

- To command a computer's hardware, you must speak its language.
- The words of a computer's language are called instructions, and its vocabulary is called an instruction set.
- Computer instructions can be represented as sequences of bits. This representation is called machine language
- Stored-program computer is the idea that instructions and data of many types can be stored in memory as numbers

Day 2 Review - Operations Of The Computer Hardware

- Every computer must be able to perform arithmetic
- Example of MIPS assembly language notation:
add a, b, c
The above means add b and c and put the result in a
- In MIPS, data must be in registers to perform arithmetic

Day 2 Review - The MIPS Assembly Language Notation

- add a, b, c
- The above MIPS assembly language notation instructs a computer to add the two variables b and c and to put their sum in a.
- Type a MIPS add instruction that computes: $z=x+y$
- Solution: add z, x, y or $\operatorname{add} z y, x$
- The natural number of operands for an operation like addition is three: the two numbers being added together and a place to put the sum.

Day 2 Review - Example 1 of compiling a complex C assignment into MIPS.

- C Code

$$
\circ f=(g+h)-(i+j) ;
$$

- MIPS
o add t0, g, h \# temp t0 contains g + h
o add t1, i, j \# temp t1 contains $\mathrm{i}+\mathrm{j}$
o sub f, t0, t1 \# f gets t0 - t1, which is ($\mathrm{g}+\mathrm{h}$) - ($\mathrm{i}+\mathrm{j}$)

Day 2 Review - Constant or immediate operands

- Many times a program will use a constant in an operation
- add immediate or addi.
- addi \$s3, \$s3, 4 \# \$s3 = \$s3 + 4

Day 2 Review - Examples

- add \$s1, \$s2, \$s3 \# add
- addi \$s1, \$s3, 50 \# add immediate

Day 2 Review - Load word instruction.

$\mathrm{g}=\mathrm{h}+\mathrm{A}[8] ;$	\$s1	60	g h A's base addr
	\$s2	35	
	\$s3	5000	
	\$t0	25	
		Registers	
\# Temporary reg \$t0 gets A[8]			
1w \$t0, 8(\$s3)	$8+5000$		
$\begin{aligned} \# \mathrm{~g}= & \mathrm{h}+\mathrm{A}[8] \\ \text { add } & \$ \mathrm{~s} 1, \$ \mathrm{~s} 2, \$ \mathrm{t} 0 \end{aligned}$			

Day 2 Review - Store word

- Load word and store word are the instructions that copy words between memory and registers in the MIPS architecture.
- Store copies data from a register to memory
- The actual MIPS name is sw, standing for store word.

Day 2 Review - Example of compiling using load and store.

```
A[12] = h + A[8];
\begin{tabular}{|c|c|c|}
\hline \$s1 & & \multirow[b]{2}{*}{h} \\
\hline \$s2 & 35 & \\
\hline \$s3 & 5000 & A's base addr \\
\hline \$t0 & 2560 & \\
\hline & Registers & \\
\hline
\end{tabular}
```


Memory

Signed and unsigned numbers

- Let's quickly review how a computer represents numbers. Humans are taught to think in base 10, but numbers may be represented in any base. For example, 123 base $10=1111011$ base 2 .
- Numbers are kept in computer hardware as a series of high and low electronic signals, and so they are considered base 2 numbers.
- A single digit of a binary number is thus the "atom" of computing, since all information is composed of binary digits or bits.
- Binary digit: Also called a bit. One of the two numbers in base 2 (0 or 1) that are the components of information.
- Just as base 10 numbers are called decimal numbers, base 2 numbers are called binary numbers.

Binary Numbers(Review)

- In assembly language it is important to remember that the actual hardware to be used only understands binary values 0 and 1 .
- Binary values 0 and 1 are called binary numbers
- The numbering system that everyone learns in school is called decimal or base 10.
- The numbering system is called decimal because it has 10 digits, [0..9].
- Binary Numbers uses base 2 numbering system
- In binary, there are only two digits, 0 and 1 .

How does a computer represent numbers? (Review)

- Numbers are kept in computer hardware as a series of high and low electronic signals, and so they are considered base 2 numbers
- Computers use switches that can be either on (1) or off(0), and so computers use the binary numbering system (base 2 numbering system)
- A single digit of a binary number is thus the "atom" of computing, since all information is composed of binary digits or bits.
- Binary digit: Also called a bit. One of the two numbers in base 2 (0 or 1) that are the components of information.

How to convert binary to decimal

- decimal $=d_{0} \times 2^{0}+d_{1} \times 2^{1}+d_{2} \times 2^{2}+\ldots$
- Generalizing the point, in any number base, the value of i th digit d is $d \times$ Base i
Example:

$$
\begin{aligned}
& \left(1 \times 2^{3}\right)+\left(0 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right) \\
= & (1 \times 8)+(0 \times 4)+(1 \times 2)+(1 \times 1) \text { ten } \\
= & 8+2+1 \text { ten } \\
= & 11 \text { ten }
\end{aligned}
$$

Example 1:

- What is $1110_{\text {two }}$ in base ten?
- Solution:

$$
\begin{aligned}
& \left(1^{*} 2^{3}\right)+\left(1^{*} 2^{2}\right)+\left(1^{*} 2^{1}\right)+\left(0^{*} 2^{0}\right) \\
& \left(1^{*} 8\right)+\left(1^{*} 4\right)+\left(1^{*} 2\right)+\left(0^{*} 1\right) \\
& 8+4 * 2+0
\end{aligned}
$$

$$
14
$$

Example 2:

- What is $1011_{\text {two }}$ in base ten?
- Solution:

$$
\begin{aligned}
& \left(1^{*} 2^{3}\right)+\left(0^{*} 2^{2}\right)+\left(1^{*} 2^{1}\right)+\left(1^{*} 2^{0}\right) \\
& \left(1^{*} 8\right)+\left(0^{*} 4\right)+\left(1^{*} 2\right)+\left(1^{*} 1\right) \\
& 8+0 * 2+1
\end{aligned}
$$

$$
11
$$

- What is $111001_{\text {two }}$ in base ten?
- What is $100011_{\text {two }}$ in base ten?

Example 3:

- What is $111001_{\text {two }}$ in base ten?
- Solution:

$$
\begin{aligned}
& \left(1^{*} 2^{5}\right)+\left(1 * 2^{4}\right)+\left(1 * 2^{3}\right)\left(0 * 2^{2}\right)+\left(0 * 2^{1}\right)+\left(1 * 2^{0}\right) \\
& (1 * 32)+(1 * 16)+(1 * 8)+(0 * 4)+(0 * 2)+(1 * 1) \\
& 32+16 * 8+0+0+1
\end{aligned}
$$

$$
57
$$

- What is $100011_{\text {two }}$ in base ten?

Example 4:

- What is $100011_{\text {two }}$ in base ten?
- Solution:

$$
\begin{aligned}
& \left(1 * 2^{5}\right)+\left(0 * 2^{4}\right)+\left(0 * 2^{3}\right)\left(0 * 2^{2}\right)+\left(1 * 2^{1}\right)+\left(1 * 2^{0}\right) \\
& (1 * 32)+(0 * 16)+(0 * 8)+(0 * 4)+(0 * 2)+(1 * 1) \\
& 32+0 * 0+0+2+1
\end{aligned}
$$

$$
25
$$

Decimal to Binary Conversions

- Conversion steps:

1. Divide the number by 2 .
2. Get the integer quotient for the next iteration.
3. Get the remainder for the binary digit.
4. Repeat the steps until the quotient is equal to 0 .

Example 1

- Convert 13_{10} to binary:

Division by 2	Quotient	Remainders	Bit \#
$13 / 2$	6	1	0
$6 / 2$	3	0	1
$3 / 2$	1	1	2
$1 / 2$	0	1	3

Writing the remainders from bottom to top, we have: $13_{10}=1101_{2}$

Example 2

- Convert 147_{10} to binary:

Division by 2	Quotient	Remainders	Bit \#
$147 / 2$	73	1	0
$73 / 2$	36	1	1
$36 / 2$	18	0	2
$18 / 2$	9	0	3
$9 / 2$	4	1	4
$4 / 2$	2	0	5
$2 / 2$	1	0	8
$1 / 2$	0	1	7

Writing and reading the remainders from bottom to top, we have: $147_{10}=10010011_{2}$

Converting Fractions

- Fractions in any base system can be approximated in any other base system using negative powers of a radix.
- Radix points separate the integer part of a number from its fractional part.
- In the decimal system, the radix point is called a decimal point. Binary fractions have a binary point

Conversion steps for fractions:

1. Multiply the fractional decimal number by 2.
2. Integral part of resultant decimal number will be first digit of fraction binary number.
3. Repeat step 1 using only fractional part of decimal number and then step 2.

Example 1

- Convert 0.34375_{10} to binary with 4 bits to the right of the binary point.

```
    . }3437
    + 2
    0.68750 (Another placeholder.)
        . }6875
    * 2
    1.37500
    . }3750
* 2
0.75000
    .75000
.
1.50000 (This is our fourth bit. We will stop here.)
```

Reading from top to bottom, $0.3437510=0.0101_{2}$ to four binary places

Hexadecimals

- A Hexadecimal Number is based on the number 16
- There are $\mathbf{1 6}$ Hexadecimal digits. They are the same as the decimal digits up to 9 , but then there are the letters A, B, C, D, E and F in place of the decimal numbers 10 to 15 :

Hexadecimal:	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Decimal:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	14

Some Numbers to remember

Decimal	4-Bit Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Powers of 2

$$
\begin{aligned}
& 2^{-2}=\frac{1}{4}=0.25 \\
& 2^{-1}=\frac{1}{2}=0.5 \\
& 2^{0}=1 \\
& 2^{1}=2 \\
& 2^{2}=4 \\
& 2^{3}=8 \\
& 2^{4}=16 \\
& 2^{5}=32 \\
& 2^{6}=64 \\
& 2^{7}=128 \\
& 2^{8}=256 \\
& 2^{9}=512 \\
& 2^{10}=1,024 \\
& 2^{15}=32,768 \\
& 2^{16}=65,536
\end{aligned}
$$

Convert Binary to Hexadecimal

- Binary numbers are often expressed in hexadecimal to improve their readability.
- Example: Convert 110010011101_{2} to hexadecimal.
- Solutions:

110010011101 Separate into groups of 4 for the hexadecimal conversion.
C 9 D

$$
110010011101_{2}=\mathrm{C}_{2} \mathrm{D}_{16}
$$

- If there are too few bits, leading zeros can be added.

Signed and Unsigned Numbers

- Computer programs calculate both positive and negative numbers, so we need a representation that distinguishes the positive from the negative
- Unsigned numbers stored only positive numbers but do not store negative numbers.
- Signed numbers use sign flag or can be distinguish between negative values and positive values.
- Number representation techniques like: Binary, Decimal and Hexadecimal number representation techniques that we have discussed above can represent numbers in both signed and unsigned ways

signed binary and Unsigned binary

- Unsigned binary numbers do not have sign bit
- Signed binary numbers uses signed bit and magnitude
- The most obvious solution is to add a separate sign, which conveniently can be represented in a single bit; the name for this representation is sign and magnitude
- Two's complement representation: leading 0s mean positive, and leading 1s mean negative.

Unsigned Numbers:

- Unsigned numbers do not have any sign as they only represent positive numbers
- Represent decimal number 92_{10} in unsigned binary number.
$=\left(1 \times 2^{6}+0 \times 2^{5}+1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}\right)_{10}$
$=(1011100)_{2}$ a 7 -bit binary magnitude of the decimal number 92_{10}.
- You can also used division to get to the above above answer

Signed Numbers:

- Signed numbers contain sign flag ro distinguish positive and negative numbers.
- This technique contains both sign bit and magnitude of a number.
- Three types of representations for signed binary numbers

1. Sign-Magnitude form
2. 1's complement form
3. 2's complement form

Sign-Magnitude form

- For n bit binary number, 1 bit is reserved for sign symbol. If the value of sign bit is 0 , the given number is positive, else if the value of sign bit is 1 , the given number is negative.
- Remaining ($\mathrm{n}-1$) bits represent magnitude of the number

Sign-Magnitude form Conversions Example

- What are the decimal values of the following 8-bit sign-magnitude numbers?
- $10000011=-3$
- $00000101=+5$
- $11111111=-127$
- $01111111=127$

Sign-Magnitude form Conversions Example

- Represent the following in 8-bit sign-magnitude

$$
\begin{aligned}
& \circ-15=10001111 \\
& \circ+7=00000111 \\
& \circ-1=1001
\end{aligned}
$$

1's complement form

- Positive values in one's complement are the same as unsigned binary or sign-magnitude.
- To negate a one's complement value, we invert all bits. Like signmagnitude, one's complement has two representations for zero (all zeros or all ones).

Conversions Example

- What are the decimal values of the following 8-bit one's complement numbers?
- $00001010=+10$
- $10001010=-(01110101)=-(1+4+16+32+64)=-117$
- 11111111 = ?

2's Complement Form

- Commonly used
- A positive integer in two's complement always has a 0 in the leftmost bit (sign bit) and is represented the same way as an unsigned binary integer.
- To negate a number, a process sometimes called "taking the two's complement", we invert all the bits and add one.

Conversion Example

- Example 1
- $+14_{10}=01110_{\text {two's comp }}$

Example 2:

- $-14_{10}=10001+1$
- $\quad=10010_{\text {two's }}$ comp
- Convert the following 4-bit 2's comp values to decimal:
-0111 $=+(1+2+4)=+7$
- $1000=-(0111+1)=-(1000)=-8$
- $0110=+(2+4)=+6$
- $1001=-(0110+1)=-0111=-(1+2+4)=-7$
- $1110=-(0001+1)=-0010=-2$

Readings

- Hennessy and Patterson Chapter 2.5 to 2.7

